
RV32I Reference Card

CS-173 — Fundamentals of Digital Systems

12th May 2025 © EPFL

1. Assembler Directives

Directive Effect

.text Switch to the code segment and place what follows there

.data Switch to the data segment and place what follows there

.asciiz "Hello, World!" Place at current location an ASCII string followed by a null-terminator

.byte 0xC, 0xA, 0xF Place at current location value(s) as byte(s)

.word 0xCAFE Place at current location value(s) as 32-bit word(s)

.equ coffee, 0xCAFE Define a symbol as a constant

2. Registers

Register Mnemonic Description

x0 zero Hard-wired zero
x1–x31 General registers; Temporaries t0–t2 and t3–t6 correspond to x5–x7 and x28–x31, resp.

pc Program counter

3. Instruction Types and Encodings

31 25 24 20 19 15 14 12 11 7 6 0

R funct7 rs2 rs1 funct3 rd opcode Register-Register

I imm[11:0] rs1 funct3 rd opcode Register-Immediate

I funct7 imm[4:0] rs1 funct3 rd opcode Register-Immediate Shift

S imm[11:5] rs2 rs1 funct3 imm[4:0] opcode Store

B imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode Branch

U imm[31:12] rd opcode Upper Immediate

J imm[20|10:1|11|19:12] rd opcode Jump

4. Standard Instructions

Instruction Pseudocode Type funct7 funct3 opcode
or Pseudoinstruction or Translation

Branch
beq rs1, rs2, imm pc← pc+ sext(imm≪ 1), if rs1 = rs2 B 0x0 0x63

bne rs1, rs2, imm pc← pc+ sext(imm≪ 1), if rs1 ̸= rs2 B 0x1 0x63

blt rs1, rs2, imm pc← pc+ sext(imm≪ 1), if rs1 <s rs2 B 0x4 0x63

bltu rs1, rs2, imm pc← pc+ sext(imm≪ 1), if rs1 <u rs2 B 0x6 0x63

bge rs1, rs2, imm pc← pc+ sext(imm≪ 1), if rs1 ≥s rs2 B 0x5 0x63

bgeu rs1, rs2, imm pc← pc+ sext(imm≪ 1), if rs1 ≥u rs2 B 0x7 0x63

ble rs1, rs2, imm pc← pc+ sext(imm≪ 1), if rs1 ≤s rs2 bge rs2, rs1, imm

bleu rs1, rs2, imm pc← pc+ sext(imm≪ 1), if rs1 ≤u rs2 bgeu rs2, rs1, imm

bgt rs1, rs2, imm pc← pc+ sext(imm≪ 1), if rs1 >s rs2 blt rs2, rs1, imm

bgtu rs1, rs2, imm pc← pc+ sext(imm≪ 1), if rs1 >u rs2 bltu rs2, rs1, imm

beqz rs1, imm pc← pc+ sext(imm≪ 1), if rs1 = 0 beq rs1, zero, imm

bnez rs1, imm pc← pc+ sext(imm≪ 1), if rs1 ̸= 0 bne rs1, zero, imm

bltz rs1, imm pc← pc+ sext(imm≪ 1), if rs1 <s 0 blt rs1, zero, imm

bgez rs1, imm pc← pc+ sext(imm≪ 1), if rs1 ≥s 0 bge rs1, zero, imm

blez rs1, imm pc← pc+ sext(imm≪ 1), if rs1 ≤s 0 bge zero, rs1, imm

bgtz rs1, imm pc← pc+ sext(imm≪ 1), if rs1 >s 0 blt zero, rs1, imm

Jump
j imm pc← pc+ sext(imm≪ 1) jal zero, imm

4. Standard Instructions (cont’d)

Instruction Pseudocode Type funct7 funct3 opcode
or Pseudoinstruction or Translation

Move
nop Nothing addi zero, zero, 0

mv rd, rs1 rd← rs1 addi rd, rs1, 0

li rd, imm rd← imm† Various translations

la rd, imm rd← address of imm§ Various translations
lui rd, imm rd← imm≪ 12 U 0x37

Arithmetic
add rd, rs1, rs2 rd← rs1+ rs2 R 0x00 0x0 0x33

addi rd, rs1, imm rd← rs1+ sext(imm) I 0x0 0x13

sub rd, rs1, rs2 rd← rs1− rs2 R 0x20 0x0 0x33

neg rd, rs1 rd← −rs1 sub rd, zero, rs1

Logical
xor rd, rs1, rs2 rd← rs1 ∧ rs2 R 0x00 0x4 0x33

xori rd, rs1, imm rd← rs1 ∧ sext(imm) I 0x4 0x13

or rd, rs1, rs2 rd← rs1 | rs2 R 0x00 0x6 0x33

ori rd, rs1, imm rd← rs1 | sext(imm) I 0x6 0x13

and rd, rs1, rs2 rd← rs1& rs2 R 0x00 0x7 0x33

andi rd, rs1, imm rd← rs1& sext(imm) I 0x7 0x13

not rd, rs1 rd← ∼rs1 xori rd, rs1, -1

Shift
sll rd, rs1, rs2 rd← rs1≪ rs2 R 0x00 0x1 0x33

slli rd, rs1, imm rd← rs1≪ imm I 0x00 0x1 0x13

srl rd, rs1, rs2 rd← rs1≫u rs2 R 0x00 0x5 0x33

srli rd, rs1, imm rd← rs1≫u imm I 0x00 0x5 0x13

sra rd, rs1, rs2 rd← rs1≫s rs2 R 0x20 0x5 0x33

srai rd, rs1, imm rd← rs1≫s imm I 0x20 0x5 0x13

Compare
slt rd, rs1, rs2 rd← rs1 <s rs2 R 0x00 0x2 0x33

slti rd, rs1, imm rd← rs1 <s sext(imm) I 0x2 0x13

sltu rd, rs1, rs2 rd← rs1 <u rs2 R 0x00 0x3 0x33

sltiu rd, rs1, imm rd← rs1 <u sext(imm) I 0x3 0x13

seqz rd, rs1 rd← rs1 = 0 sltiu rd, rs1, 1

snez rd, rs1 rd← rs1 ̸= 0 sltu rd, zero, rs1

sltz rd, rs1 rd← rs1 <s 0 slt rd, rs1, zero

sgtz rd, rs1 rd← rs1 >s 0 slt rd, zero, rs1

Memory
lb rd, imm(rs1) rd← sext(mem[rs1+ sext(imm)][7 : 0]) I 0x0 0x03

lbu rd, imm(rs1) rd← zext(mem[rs1+ sext(imm)][7 : 0]) I 0x4 0x03

lw rd, imm(rs1) rd← mem[rs1+ sext(imm)] I 0x2 0x03

sb rs2, imm(rs1) mem[rs1+ sext(imm)]← rs2[7 : 0] S 0x0 0x23

sw rs2, imm(rs1) mem[rs1+ sext(imm)]← rs2 S 0x2 0x23

∼ Bitwise NOT ≪ Left shift mem Memory access
& Bitwise AND ≫ Right shift sext Sign extend
| Bitwise OR ops Signed operation zext Zero extend
∧ Bitwise XOR opu Unsigned operation

† Use li if imm is a symbol defined using .equ or a number
§ Use la if imm is a symbol defined as label:

