RV32l Reference Card

CS-173 — Fundamentals of Digital Systems
12th May 2025 (c) EPFL

1. Assembler Directives

Directive Effect
.text Switch to the code segment and place what follows there
.data Switch to the data segment and place what follows there
.asciiz "Hello, World!" Place at current location an ASCII string followed by a null-terminator
.byte 0xC, OxA, OxF Place at current location value(s) as byte(s)
.word OxCAFE Place at current location value(s) as 32-bit word(s)
.equ coffee, OxCAFE Define a symbol as a constant

2. Registers

Register Mnemonic Description
x0 zero Hard-wired zero

x1-x31 General registers; Temporaries t0-t2 and t3—t6 correspond to x5—x7 and x28—x31, resp.
pc Program counter

3. Instruction Types and Encodings

31 25 24 20 19 15 14 12 11 7 6 0

R funct7 ‘ rs2 rsl | funct3 rd opcode | Register-Register

| imm([11:0] rsl | funct3 rd opcode | Register-Immediate

| funct? imm[4:0] | rsl | funct3 rd opcode | Register-Immediate Shift

S imm[11:5] rs2 rsl | funct3 imm[4:0] opcode | Store

B | imm[12]10:5] rs2 rsl | funct3 | imm[4:1|11] | opcode | Branch

U imm[31:12] rd opcode | Upper Immediate

J imm[20]10:1]11|19:12] rd opcode | Jump

4. Standard Instructions
Instruction Pseudocode Type funct?7 funct3 opcode
or Pseudoinstruction or Translation

Branch
beq rsl, rs2, imm pc < pc + sext(imm < 1), if rs1 = rs2 B 0x0 0x63
bne rsl, rs2, imm pc + pc + sext(imm < 1), if rs1 # rs2 B 0x1 0x63
blt rsl, rs2, imm pc + pc + sext(imm < 1), if rs1 <, rs2 B 0x4 0x63
bltu rsl, rs2, imm pc + pc + sext(imm < 1), if rs1 <, rs2 B 0x6 0x63
bge rsl, rs2, imm pc < pc + sext(imm < 1), if rs1 >, rs2 B 0x5 0x63
bgeu rsl, rs2, imm pc < pc + sext(imm < 1), if rs1 >, rs2 B 0x7 0x63
ble rsl, rs2, imm pc + pc + sext(imm < 1), if rs1 <, rs2 bge rs2, rsl, imm
bleu rsl, rs2, imm pc < pc + sext(imm < 1), if rs1 <, rs2 bgeu rs2, rsl, imm
bgt rsl, rs2, imm pc + pc + sext(imm < 1), if rs1 >, rs2 blt rs2, rsl, imm
bgtu rsl, rs2, imm pc < pc + sext(imm < 1), if rs1 >, rs2 bltu rs2, rsl, imm
beqz rsl, imm pc < pc + sext(imm < 1), if rs1 =0 beq rsl, zero, imm
bnez rsil, imm pc + pc + sext(imm < 1), if rs1 # 0 bne rsl, zero, imm
bltz rsil, imm pc + pc + sext(imm <« 1), if rs1 <, 0 blt rsl, zero, imm
bgez rsl, imm pc + pc + sext(imm < 1), if rs1 >, 0 bge rsl, zero, imm
blez rsl, imm pc < pc + sext(imm < 1), if rs1 <, 0 bge zero, rsl, imm
bgtz rsl, imm pc < pc + sext(imm < 1), if rs1 >, 0 blt zero, rsl, imm

Jump
j imm pc < pc + sext(imm < 1) jal zero, imm

4. Standard Instructions (cont’d)

Instruction
or Pseudoinstruction

Pseudocode

Type funct? funct3 opcode
or Translation

Move
nop Nothing addi zero, zero, O
mv rd, rsl rd < rsi addi rd, rsi, O
1i rd, imm rd <+ immf Various translations
la rd, imm rd + address of imm} Various translations
lui rd, imm rd <+ imm < 12 U 0x37
Arithmetic
add rd, rsl, rs2 rd < rsl + rs2 R 0x00 0x0 0x33
addi rd, rsl, imm rd < rsi+ sext(imm) I 0x0 0x13
sub rd, rsil, rs2 rd < rsl —rs2 R 0x20 0x0 0x33
neg rd, rsi rd < —rsli sub rd, zero, rsi
Logical
xor rd, rsl, rs2 rd < rs1” rs2 R 0x00 0x4 0x33
xori rd, rsl, imm rd < rsl” sext(imm) | 0x4 0x13
or rd, rsl, rs2 rd < rsl|rs2 R 0x00 0x6 0x33
ori rd, rsl, imm rd « rsil | sext(imm) I 0x6 0x13
and rd, rsil, rs2 rd < rs1 & rs2 R 0x00 ox7 0x33
andi rd, rsl, imm rd < rsi & sext(imm) I 0x7 0x13
not rd, rsil rd < ~rsl xori rd, rsi, -1
Shift
s1ll rd, rsl, rs2 rd < rsl <€ rs2 R 0x00 0x1 0x33
slli rd, rsl, imm rd < rsl1 < imm | 0x00 0x1 0x13
srl rd, rsl, rs2 rd < rs1 >, rs2 R 0x00 0x5 0x33
srli rd, rsl, imm rd < rsl >, imm | 0x00 0x5 0x13
sra rd, rsl, rs2 rd < rsl >, rs2 R 0x20 0x5 0x33
srai rd, rsl, imm rd < rsl >, imm | 0x20 0x5 0x13
Compare
slt rd, rsl, rs2 rd < rsl <, rs2 R 0x00 0x2 0x33
slti rd, rsl, imm rd ¢ rsl <, sext(imm) | 0x2 0x13
sltu rd, rsl, rs2 rd < rsl <, rs2 R 0x00 0x3 0x33
sltiu rd, rsil, imm rd < rsi <, sext(imm) | 0x3 0x13
seqz rd, rsi rd < rs1 =0 sltiu rd, rsi, 1
snez rd, rsl rd <~ rsl1 #0 sltu rd, zero, rsl
sltz rd, rsil rd <—rsl1 <; 0 slt rd, rsl, zero
sgtz rd, rsil rd < rsl1 >0 slt rd, zero, rsl
Memory
1b rd, imm(rsi) rd < sext(mem[rs1 + sext(imm)][7 : 0]) I 0x0 0x03
1bu rd, imm(rsl) rd < zext(mem[rs1 + sext(imm) 0]) | 0x4 0x03
1w rd, imm(rsl) rd < mem|rsl + sext(imm)] I 0x2 0x03
sb rs2, imm(rsl) mem[rsl + sext(imm)] < rs2[7 : 0] S 0x0 0x23
sw rs2, imm(rsl) mem[rsl + sext(imm)] < rs2 S 0x2 0x23

~ Bitwise NOT <& Left shift mem Memory access

& Bitwise AND > Right shift sext Sign extend

| Bitwise OR op, Signed operation zext Zero extend

A Bitwise XOR op, Unsigned operation

T Use 11 if imm is a symbol defined using .

equ or a number

§ Use 1a if imm is a symbol defined as label:

